
MIRACL Documentation
Release 2.2.6

Maged Goubran

Mar 27, 2024

CONTENTS:

1 About 1
1.1 MIRACL in a nutshell . 1
1.2 Licence . 2
1.3 Citing MIRACL . 2
1.4 MIRACL in research . 4
1.5 Acknowledgements . 4
1.6 AICONS Lab . 9

2 Installing and running MIRACL 11

3 Tutorials 19
3.1 Legend . 19
3.2 Getting started . 20
3.3 Workflows . 24
3.4 Conversion . 45
3.5 Registration . 49
3.6 Stats . 57
3.7 Segmentation . 59
3.8 Utilities . 61
3.9 HPC/SLURM clusters . 62

4 Jupyter notebooks 69

5 Troubleshooting 71
5.1 Docker . 71
5.2 Singularity . 74
5.3 Local installation . 75

6 Gallery 77
6.1 Graphical User Interface (GUI) . 78
6.2 Brain Graph . 79
6.3 Clarity Registration . 80
6.4 Connectivity . 84
6.5 Pipeline . 84
6.6 Registration and Segmentation . 85

7 Downloads 89
7.1 Data . 89
7.2 Workshops . 89

8 **NEW WORKFLOW/FEATURE RELEASE** 93

i

ii

CHAPTER

ONE

ABOUT

Find important information about MIRACL here. Use the Next button at the bottom of the page or jump to a topic
directly by chosing it from the sidebar menu or TOC.

1.1 MIRACL in a nutshell

MIRACL (Multi-modal Image Registration And Connectivity anaLysis) is a general-purpose, open-source pipeline for
automated:

1. Registration of cleared and imaging data (ex. LSFM and MRI) to atlases (ex. Allen Reference Atlas)

2. 3D Segmentation and feature extraction of cleared data

3. Tract-specific or network-level connectivity analysis

4. Statistical analysis of cleared and imaging data

5. Comparison of dMRI/tractography, virus tracing, and connectivity atlases

6. Atlas generation and Label manipulation

1.1.1 Program structure

MIRACL is structured into Modules and Workflows.

Modules

The pipeline is comprised of different Modules depending on their respective functionality. Functions for each module
are grouped together:

Module Functionality
connect Connectivity
conv Conversion (Input/Output)
reg Registration
seg Segmentation
lbls Labels
utilfn Utilities
sta Structure Tensor Analysis
stats Statistics

1

MIRACL Documentation, Release 2.2.6

An example of using a module would be to run the clar_allen function which performs a CLARITY whole-brain
registration to Allen Atlas on a nifti image (down-sampled by a factor of five):

$ miracl reg clar_allen -i niftis/SHIELD_05x_down_autoflor_chan.nii.gz -o ARI -m␣
→˓combined -b 1

The above command uses the -i flag to select the nifti file, -o to specify the orientation of the image, -m to register to
both hemispheres and -b to include the olfactory bulb.

Workflows

The workflow (flow) module combines multiple functions from the above modules for ease of use to perform a desired
task.

For example, a standard reg/seg analysis could look like this:

First perform registration of whole-brain CLARITY data to ARA:

$ miracl flow reg_clar -h

Then perform segmentation and feature extraction of full resolution CLARITY data:

$ miracl flow seg -h

Or structure tensor analysis:

$ miracl flow sta -h

1.2 Licence

MIRACL is licensed under the terms of the GNU General Public License v3.0.

MIRACL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have received a
copy of GNU General Public License v3.0 along with HippMapp3r.

The code is released for academic research use only. For commercial use, please contact .

1.3 Citing MIRACL

Citation guidelines for using MIRACL in your work.

2 Chapter 1. About

https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://github.com/AICONSlab/HippMapp3r

MIRACL Documentation, Release 2.2.6

1.3.1 MIRACL publication

If you use MIRACL in your work please cite our paper:

APA

Goubran, M., Leuze, C., Hsueh, B., Aswendt, M., Ye, L., Tian, Q., Cheng, M.Y., Crow, A., Steinberg, G.K., McNab,
J.A., Deisseroth, K., and Zeineh, M. (2019). Multimodal image registration and connectivity analysis for integration
of connectomic data from microscopy to MRI. Nature communications, 10(1), 5504.

BibTeX

@article{goubran2019multimodal,
title={Multimodal image registration and connectivity analysis for integration of␣

→˓connectomic data from microscopy to MRI},
author={Goubran, Maged and Leuze, Christoph and Hsueh, Brian and Aswendt, Markus and␣

→˓Ye, Li and Tian, Qiyuan and Cheng, Michelle Y and Crow, Ailey and Steinberg, Gary K␣
→˓and McNab, Jennifer A and Deisseroth, Karl and Zeineh, Michael},
journal={Nature communications},
volume={10},
number={1},
pages={5504},
year={2019},
publisher={Nature Publishing Group UK London}

}

1.3.2 Tools used by MIRACL

Some of our functions build on or use these tools (please cite their work if you are using them):

Tool Function
Allen Regional Atlas Atlas registration
Allen Connectivity Atlas Connectivity analyses
ANTs Registration
Fiji Segmentation
c3d Image processing
FSL Diffusion MRI processing
MRtrix3 Tractography
TrackVis/DTK Tractography

1.3. Citing MIRACL 3

https://www.nature.com/articles/s41467-019-13374-0
https://www.nature.com/articles/s41467-019-13374-0
https://www.nature.com/articles/s41467-019-13374-0
http://mouse.brain-map.org/static/atlas
http://connectivity.brain-map.org/
https://github.com/stnava/ANTs
https://imagej.nih.gov/ij/index.html
https://sourceforge.net/projects/c3d
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://mrtrix.readthedocs.io/en/latest/
http://trackvis.org/

MIRACL Documentation, Release 2.2.6

1.4 MIRACL in research

A selection of publications that used or referenced MIRACL:

Hsueh, B., Chen, R., Jo, Y., Tang, D., Raffiee, M., Kim, Y. S., . . . Goubran, M., & Deisseroth, K. (2023). Cardiogenic
control of affective behavioural state. Nature, 1-8.

Qu, L., Li, Y., Xie, P., Liu, L., Wang, Y., Wu, J., . . . & Peng, H. (2022). Cross-modal coherent registration of whole
mouse brains. Nature Methods, 19(1), 111-118.

Georgiadis, M., Schroeter, A., Gao, Z., Guizar-Sicairos, M., Liebi, M., Leuze, C., . . . & Rudin, M. (2021).
Nanostructure-specific X-ray tomography reveals myelin levels, integrity and axon orientations in mouse and human
nervous tissue. Nature communications, 12(1), 2941.

Wang, X., Zeng, W., Yang, X., Zhang, Y., Fang, C., Zeng, S., . . . & Fei, P. (2021). Bi-channel image registration and
deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain. Elife, 10, e63455.

Boillat, M., Hammoudi, P. M., Dogga, S. K., Pages, S., Goubran, M., Rodriguez, I., & Soldati-Favre, D. (2020).
Neuroinflammation-associated aspecific manipulation of mouse predator fear by Toxoplasma gondii. Cell reports,
30(2), 320-334.

Pallast, N., Wieters, F., Nill, M., Fink, G. R., & Aswendt, M. (2020). Graph theoretical quantification of white matter
reorganization after cortical stroke in mice. NeuroImage, 217, 116873.

Ito, M., Aswendt, M., Lee, A. G., Ishizaka, S., Cao, Z., Wang, E. H., . . . & Steinberg, G. K. (2018). RNA-sequencing
analysis revealed a distinct motor cortex transcriptome in spontaneously recovered mice after stroke. Stroke, 49(9),
2191-2199.

1.5 Acknowledgements

Huge thank you to:

• Vanessa Sochat (@vsoch) for creating the Docker & Singularity containers for the pipeline

• Newton Cho, Jordan Squair and Stéphane Pagès for helping optimize the segmentation workflows & troubleshoot-
ing

• The members of AICONS Lab for their feedback and contributions

GitHub contributers (ordered by number of commits):

4 Chapter 1. About

https://www.nature.com/articles/s41586-023-05748-8
https://www.nature.com/articles/s41586-023-05748-8
https://www.nature.com/articles/s41592-021-01334-w
https://www.nature.com/articles/s41592-021-01334-w
https://www.nature.com/articles/s41467-021-22719-7
https://www.nature.com/articles/s41467-021-22719-7
https://elifesciences.org/articles/63455.pdf
https://elifesciences.org/articles/63455.pdf
https://www.sciencedirect.com/science/article/pii/S2211124719316699
https://www.sciencedirect.com/science/article/pii/S1053811920303591
https://www.sciencedirect.com/science/article/pii/S1053811920303591
https://www.ahajournals.org/doi/full/10.1161/STROKEAHA.118.021508
https://www.ahajournals.org/doi/full/10.1161/STROKEAHA.118.021508
https://aiconslab.github.io/

MIRACL Documentation, Release 2.2.6

•

anthonyprinaldi

1.5. Acknowledgements 5

https://github.com/anthonyprinaldi

MIRACL Documentation, Release 2.2.6

•

vsoch

6 Chapter 1. About

https://github.com/vsoch

MIRACL Documentation, Release 2.2.6

•

ishita1988

1.5. Acknowledgements 7

https://github.com/ishita1988

MIRACL Documentation, Release 2.2.6

•

kelvin-jok

8 Chapter 1. About

https://github.com/kelvin-jok

MIRACL Documentation, Release 2.2.6

•

chrisroat

PR’s:

• dariocalvarez

1.6 AICONS Lab

The Artificial Intelligence and COmputational NeuroSciences (AICONS) Lab is located at the Sunnybrook Research
Institute of the University of Toronto and is part of the Black Centre for Brain Resilience and Recovery, Harquail Centre
for Neuromodulation, and Temerty Centre for AI Research and Education in Medicine.

Our work combines technical and translational research, focusing on the development of novel AI, computational and
imaging tools to probe, predict and understand neuronal and vascular circuit alterations, and model brain pathology in
neurological disorders, including Alzheimer’s disease, stroke and traumatic brain injury.

For more information visit our official webpage.

1.6. AICONS Lab 9

https://github.com/chrisroat
https://github.com/DarioCAlvarez
https://sunnybrook.ca/research/
https://sunnybrook.ca/research/
https://www.utoronto.ca/
https://sunnybrook.ca/foundation/content/?page=brain-sciences-sandra-black
https://sunnybrook.ca/research/content/?page=sri-centre-harquail
https://sunnybrook.ca/research/content/?page=sri-centre-harquail
https://tcairem.utoronto.ca/
https://aiconslab.github.io/

MIRACL Documentation, Release 2.2.6

10 Chapter 1. About

CHAPTER

TWO

INSTALLING AND RUNNING MIRACL

We provide instructions on how to install and run MIRACL using either of the following methods:

Important: Docker is our recommended method for running MIRACL on local machines and servers. We recommend
Singularity to run MIRACL in a cluster environment (e.g. Compute Canada).

Attention: Support for installing MIRACL locally (i.e. on your host system directly without using Docker or
Singularity) will be phased out in future versions of the software

Docker

Singularity

Local

Windows

We provide a build script to automatically create a Docker image for you that can be run using Docker Compose.
This method does not require a manual installation of MIRACL and works on Linux, macOS and Windows (using WSL
2).

Tip: This is our recommended method for running MIRACL on local machines and servers

Docker is well suited if you want to run MIRACL on a local machine or local server. If you need to run MIRACL on a
cluster, see our instructions for installing Singularity. If you don’t have Docker installed on your computer, do that
first. Make sure your installation includes Docker Compose as it is required to run the build script we provide. Note
that Docker Compose is included as part of the Docker Desktop installation by default.

First, it is important to understand how the container is built. There is a base image in the docker folder that installs
Python and dependencies. Then the Dockerfile in the base of the repository builds the mgoubran/miracl image
from that base. When the build happens, it cats the version.txt file in the repository to save a versioned base, but
then the build uses the tag revised-base-latest that is always the latest base. The base container is built from this folder
and pushed manually, while the main container is built and pushed automatically via the CircleCI Recipe. Thus, if
you want to update the base, you will need to see the README.md in that folder and push new images.

This will build a Docker image of MIRACL based on its latest version using our default naming scheme. For custom
names and specific versions see below for our Additional build options section.

Clone the MIRACL repo to your machine:

11

MIRACL Documentation, Release 2.2.6

$ git clone https://www.github.com/mgoubran/MIRACL
$ cd MIRACL

Build the latest MIRACL image using the build script we provide:

$./build.sh

Error: Make sure that the script can be executed. If it can’t and you are the owner of the file, use chmod u+x
build.sh to make it executable. Prefix with sudo if you are not the owner of the file or change permissions for g
and/or o.

Once the image has successfully been built, run the container using Docker Compose:

$ docker compose up -d

Note: Note that the Docker Compose syntax is different if you installed it using the standalone method. Compose
standalone uses the -compose syntax instead of the current standard syntax compose. The above command would
thus be docker-compose up -d when using Compose standalone.

The container is now running and ready to be used.

Interactively shell inside:

$ docker exec -it miracl bash

Files that are saved while using MIRACL should be saved to volumes mounted into the container in order to make them
persistent. To mount volumes, just add them to the docker-compose.yml in the base directory under volumes.

Danger: Do not delete the volume that is already mounted which mounts your .Xauthority! This is important
for X11 to work correctly.

Example:

volumes:
- '/home/mgoubran/.Xauthority:/home/mgoubran/.Xauthority'
- '/home/mgoubran/mydata:/home/mgoubran/mydata'

Exit your container and navigate to your MIRACL folder. Use Docker Compose to stop the container:

$ docker compose down

Note: Note that the Docker Compose syntax is different if you installed it using the standalone method. Compose
standalone uses the -compose syntax instead of the current standard syntax compose. The above command would
thus be docker-compose up -d when using Compose standalone.

Naming is done automatically when using our build script which includes a default naming scheme. By default, the
image is named mgoubran/miracl:latest and the container is tagged with miracl.

You can easily change the defaults if your usecase requires it by running our build script with the following options:

12 Chapter 2. Installing and running MIRACL

MIRACL Documentation, Release 2.2.6

$./build -i <image_name> -c <container_name>

Options:

-i, Specify image name (default: mgroubran/miracl)
-c, Specify container name (default: miracl)

Example:

$./build -i josmann/miracl -c miracl_dev_version

Tip: Use ./build -h to show additional options

By default, Docker images will be built using the latest version of MIRACL. If you need to build a Docker image based
on a specific version of MIRACL, do the following:

1. Clone the MIRACL repository and navigate to the MIRACL folder:

$ git clone https://www.github.com/mgoubran/MIRACL
$ cd MIRACL

2. Cloning the repository will download all tags/versions. List them with:

$ git tag -l

Example output:

v1.1.1
v2.2.1
v2.2.2
v2.2.3
v2.2.4
v2.2.5

3. Decide which tag/version of MIRACL you want to use and check it out as a new branch:

$ git checkout tags/<tag_name> -b <branch_name>

Example:

$ git checkout tags/v2.2.4 -b miracl_v2.2.4

4. If you are reverting to a version of MIRACL >= 2.2.4, you can build the image for your chosen version by
running the build script with the -t flag:

$./build.sh -t

Note: If you want to build an image for a version of MIRACL <= 2.2.4 either follow the build instructions of the
particular version or download the latest build script using e.g. wget https://raw.githubusercontent.com/
AICONSlab/MIRACL/master/build.sh (overwrites current build script if present) and run it with the -t flag.

5. From here you can follow our instructions for building MIRACL from scratch starting with docker compose up
-d. Our script will automatically detect the version of the branch you checked out and tag the image accordingly.

13

MIRACL Documentation, Release 2.2.6

Unlike Docker, Singularity is well suited to run in a cluster environment (like Sherlock at Stanford or Compute
Canada). We provide the latest version of MIRACL as a Singularity container that can be conveniently pulled from
cloud storage.

Tip: This is our recommended method for running MIRACL in a SLURM cluster environment such as Compute Canada
or Sherlock @ Stanford

First, log in to the cluster:

$ ssh -Y <username>@<cluster>

<cluster> could be sherlock.stanford.edu or cedar.computecanada.ca for example

Once logged in, change the directory to your scratch space and pull (download) the Singularity container:

$ cd $SCRATCH
$ singularity pull miracl_latest.sif library://aiconslab/miracl/miracl:latest

Attention: singularity pull requires Singularity version 3.0.0 or higher. Please refer to our Troubleshoot-
ing section (“Can I build a Singularity container from the latest MIRACL image on Docker Hub”) if you are using
an older version of Singularity.

To shell into the container use:

$ singularity shell miracl_latest.sif bash

Use the -B flag to bind a data directory to the container:

$ singularity shell -B /data:/data miracl_latest.sif bash

See also:

For running functions on clusters please check our Singularity tutorials for Compute Canada and Sherlock

Warning: Support for this installation method will be discontinued in future versions of MIRACL. We recommend
to use Docker or Singularity instead.

Steps to setup/run MIRACL on a Linux/macOS machine:

$ git clone https://github.com/mgoubran/MIRACL.git miracl

Tip: Alternatively, you can download the zip file containg the repo and uncompress it

Next, change directories into the newly created miracl folder:

$ cd miracl

Create your virtual MIRACL environment and activate it:

14 Chapter 2. Installing and running MIRACL

MIRACL Documentation, Release 2.2.6

Attention: To setup a virtual environment you need Anaconda for Python 2.7. It can be downloaded from their
official website

$ conda create --name miracl python=3.7.4 pip
$ conda activate miracl

Install dependencies:

$ pip install -e .

Next, download the depends folder from our Dropbox link and place it either inside the linux_depends or
mac_depends folder:

$ mv ~/Downloads/depends.zip miracl/.
$ cd miracl
$ unzip depends.zip
$ rm depends.zip

This folder contains compiled versions of ANTS and c3d for Linux or Mac OS. Before continuing, make sure to change
the permissions.

This can be done by running:

$ chmod -R 755 <path/to/depends>/*

In order to run the pipeline, some symbolic links must be added to access certain commands. Inside the miracl folder,
run:

$ sudo ln -s <path/to/depends>/ants/antsRegistrationMIRACL.sh /usr/bin/ants_miracl_clar &
→˓& chmod +x /usr/bin/ants_miracl_clar
$ sudo ln -s <path/to/depends>/ants/antsRegistrationMIRACL_MRI.sh /usr/bin/ants_miracl_
→˓mr && chmod +x /usr/bin/ants_miracl_mr

Make sure <path/to/depends> is replaced with the directory path that leads to the depends directory.

Place the atlases folder (which got downloaded together with the depends folder) inside the miracl folder:

$ mv ~/Downloads/atlases.zip miracl/.
$ cd miracl
$ unzip atlases.zip
$ rm atlases.zip

This folder contains the Allen Atlas data needed for registration and connectivity analysis.

First, download Fiji/ImageJ from their offical website.

Then do:

$ cd depends
$ wget https://downloads.imagej.net/fiji/latest/fiji-linux64.zip
$ unzip fiji-linux64.zip
$ rm fiji-linux64.zip

Next, install additional plugins by going to Help -> Update and clicking on the Manage update sites button.

Choose the following update sites:

15

https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.dropbox.com/sh/i9swdedx7bsz1s8/AABpDmmN1uqPz6qpBLYLtt8va?dl=0
https://imagej.net/Fiji/Downloads

MIRACL Documentation, Release 2.2.6

• 3D ImageJ Suite: http://sites.imagej.net/Tboudier

• Biomedgroup: https://sites.imagej.net/Biomedgroup

• IJPB-plugins: http://sites.imagej.net/IJPB-plugins

Download FSL and install it:

$ wget https://fsl.fmrib.ox.ac.uk/fsldownloads/fslinstaller.py
$ sudo python fslinstaller.py

For the visualization of nifti files and labels we recommend ITKSNAP or the nifti plugin for Fiji/ImageJ.

If you have diffusion MRI data download and install MRtrix3:

$ sudo apt-get install git g++ python python-numpy libeigen3-dev zlib1g-dev libqt4-
→˓opengl-dev libgl1-mesa-dev libfftw3-dev libtiff5-dev
$ git clone https://github.com/MRtrix3/mrtrix3.git
$ cd mrtrix3
$./configure
$./build
$./set_path

To end a MIRACL session, deactivate your virtual environment:

$ conda deactivate

To update MIRACL, navigate into your MIRACL base folder (e.g. $ cd miracl) and run:

$ git pull

You should be good to go!

Warning: Support for installing MIRACL locally in the WSL will be discontinued in future versions of MIRACL.
We recommend to use Docker or Singularity instead.

To install MIRACL on your Windows system, Windows Subsystem for Linux (WSL) must be installed. WSL2 is pre-
ferred. From there, the usual steps to install MIRACL on a Linux based system will be used with a few tweaks.

Hint: Follow the below steps if you want to install MIRACL in your WSL instance locally. If you prefer to use Docker
to run MIRACL on Windows follow our installation instructions for Docker instead.

The Windows Subsystem for Linux (WSL) creates an environment that allows users to run versions of Linux without
having to set up a virtual machine or a different computer.

To install WSL, users can follow the instructions from Microsoft. More comprehensive instructions can be found here.
Upgrading from WSL 1 to WSL 2 is recommended, due to WSL 2’s benefits.

Note: You may ignore this step if you have a preferred Linux distribution that is already installed in your WSL2

A Linux distribution (distro), like Ubuntu, is an operating system based on the Linux kernel.

Now that WSL (either 1 or 2) is installed, the Ubuntu 22.04 distro can be installed. To install Ubuntu, open the
Windows Store app, search for “Ubuntu 22.04”, and select the Get button. You could also use this link.

16 Chapter 2. Installing and running MIRACL

http://sites.imagej.net/Tboudier
https://sites.imagej.net/Biomedgroup
http://sites.imagej.net/IJPB-plugins
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation
http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.SNAP3
https://imagej.nih.gov/ij/plugins/nifti.html
http://www.mrtrix.org/
https://docs.microsoft.com/en-us/windows/wsl/compare-versions
https://docs.microsoft.com/en-us/windows/wsl/install
https://www.windowscentral.com/install-windows-subsystem-linux-windows-10
https://docs.microsoft.com/en-us/windows/wsl/compare-versions
https://www.microsoft.com/en-gb/p/ubuntu-2004-lts/9n6svws3rx71

MIRACL Documentation, Release 2.2.6

The Ubuntu distro should have Python 3 installed. To ensure that this is the case, update all packages installed in the
WSL:

$ sudo apt update
$ sudo apt -y upgrade

We can see which version of Python 3 is installed by typing:

$ python3 -V

The output in the terminal window will show the version number.

pip is required to install software packages in Python. It can be installed by running the following command:

$ sudo apt install -y python3-pip

You could also use Anaconda to install the packages but we found that installing and using pip was more straightforward.

To actually install MIRACL, follow the local installation instructions for Linux and macOS.

To use MIRACL's graphical user interface (GUI), Xming must be installed. Xming is a display server for Windows
computers, that is available for use by anyone. It can be downloaded from SourceForge.

Before running MIRACL's GUI, run Xming. In the terminal window where MIRACL's GUI will be run, input the
following command:

$ export DISPLAY=$DISPLAY:localhost:0

Now that everything is installed, MIRACL can be run via the WSL. To run:

1. Open WSL via terminal

2. Navigate to the folder where you would like to run MIRACL from

3. Activate the environment containing miracl:

$ source activate miracl
$ miraclGUI

An accompanying Jupyter notebook for this tutorial can be found here.

17

https://www.google.com/url?q=https://sourceforge.net/projects/xming/&source=gmail&ust=1641769602186000&usg=AOvVaw2MoTURhTsyCk_-56M3Qljj

MIRACL Documentation, Release 2.2.6

18 Chapter 2. Installing and running MIRACL

CHAPTER

THREE

TUTORIALS

The tutorial structure generally matches the module/function structure of MIRACL. Refer to the Legend section for
syntax information.

Choose the tutorial for the function you are interested in from its respective module in the sidebar/TOC or go to our
Getting started section for a tutorial on MIRACL's general usage.

Note that not all functions have tutorials yet. . .we are working on it!!!

3.1 Legend

In the docs/tutorials, code examples are written as follows:

$ miracl -h

Code blocks look like this:

usage: miracl [-h] {connect,conv,flow,lbls,reg,seg,sta,stats,utils} ...

positional arguments:
{connect,conv,flow,lbls,reg,seg,sta,stats,utils}
connect connectivity functions
conv conversion functions
flow workflows to run
lbls label manipulation functions
reg registration functions
seg segmentation functions
sta structure tensor analysis functions
stats statistical functions
utils utility functions

optional arguments:
-h, --help show this help message and exit

Inline code is marked as: $ miracl -h

Admonitions are displayed as colored text boxes. This is an example of what a ‘tip’ admonition would look like:

Tip: The above -h flag can be used with each of MIRACL’s modules/functions

We use brackets to denote text as follows:

19

MIRACL Documentation, Release 2.2.6

• {}: Used for variabels.

– Example: niftis/downsample{factor}x.nii.gz

• <>: Used for placeholder text in examples that you need to replace with your own information.

– Example: $ ssh <username>@cedar.computecanada.ca

• []: Placeholders for flag arguments used in command-line scripting.

– Example: $ miracl flow sta -f [Tiff folder] -o [output nifti]

• []: Denotes flags in the command-line help menus.

– Example: $ miracl [-h]

Files and directories (or generally paths) are denoted like this: example_dir/example_file.nii.gz

Names of exectutable programs are marked as follows: MIRACL

Lastly, links are highlighted in blue (purple when clicked): link to MIRACL’s README

3.2 Getting started

MIRACL can be run in the command-line or by using its GUI.

3.2.1 Command-line

Note: If you have installed MIRACL locally, run source activate miracl first to start its virtual environment.

To look at available modules, invoke the help menu:

$ miracl -h

The following menu should be printed to the terminal:

usage: miracl [-h] {connect,conv,flow,lbls,reg,seg,sta,utils} ...

positional arguments:
{connect,conv,flow,lbls,reg,seg,sta,utils}
connect connect functions
conv conv functions
flow workflows to run
lbls Label manipulation functions
reg registration functions
seg segmentation functions
sta STA functions
sta STA functions
utils Utils functions

optional arguments:
-h, --help show this help message and exit

If you want information about a particular module you can call it with -h. Let’s use the conv module as an example.
Invoke its help menu using:

20 Chapter 3. Tutorials

https://github.com/AICONSlab/MIRACL/blob/jo-docs_build_fix/README.md

MIRACL Documentation, Release 2.2.6

$ miracl conv -h

You should get:

usage: miracl conv [-h] {tiff_nii,nii_tiff,set_orient,gui_opts} ...

positional arguments:
{tiff_nii,nii_tiff,set_orient,gui_opts}
tiff_nii convert Tiff stacks to Nii
nii_tiff convert Nii volume to Tiff stack
set_orient Set orientation tag with GUI
gui_opts GUI options

optional arguments:
-h, --help show this help message and exit

For accessing the help menu of a specific function in the conv module, say tiff_nii, type:

$ miracl conv tiff_nii -h

You should get:

usage: Converts Tiff images to Nifti

A GUI will open to choose your:

- < Input CLARITY TIFF dir >

For command-line / scripting

Usage: miracl conv tiff_nii -f [Tiff folder]

Example: miracl conv tiff_nii -f my_tifs -o stroke2 -cn 1 -cp C00 -ch Thy1YFP -vx 2.5 -
→˓vz 5

required arguments:
-f dir, --folder dir Input CLARITY TIFF folder/dir

optional arguments:
-d , --down Down-sample ratio (default: 5)
-cn , --channum Chan # for extracting single channel from multiple channel data␣

→˓(default: 0)
-cp , --chanprefix Chan prefix (string before channel number in file name). ex: C00
-ch , --channame Output chan name (default: eyfp)
-o , --outnii Output nii name (script will append downsample ratio & channel␣

→˓info to given name)
-vx , --resx Original resolution in x-y plane in um (default: 5)
-vz , --resz Original thickness (z-axis resolution / spacing between slices)␣

→˓in um (default: 5)
-c [...], --center [...] Nii center (default: 0,0,0) corresponding to Allen atlas␣

→˓nii template
(continues on next page)

3.2. Getting started 21

MIRACL Documentation, Release 2.2.6

(continued from previous page)

-dz , --downzdim Down-sample in z dimension, binary argument, (default: 1) => yes
-pd , --prevdown Previous down-sample ratio, if already downs-sampled
-h, --help Show this help message and exit

To run the function with an input dir called input_tiff_dir, a down-sampling factor of 5 and an output called test,
you would type:

$ miracl conv tiff_nii -f input_tiff_dir -d 5 -o test

3.2.2 GUI

To run the main GUI:

$ miraclGUI

The GUI should open:

22 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

To get the GUI of a specific function, run it without arguments, for example:

$ miracl conv tiff_nii

Not all functions have GUIs yet. . .we are working on it!!!

3.2. Getting started 23

MIRACL Documentation, Release 2.2.6

See also:

Check the rest of the tutorials for more detailed documentation on modules and functions

3.3 Workflows

The workflow (flow) module combines multiple functions from various modules for ease of use to perform a desired
task.

For example, a standard reg/seg analysis could look like this:

First perform registration of whole-brain CLARITY data to ARA:

$ miracl flow reg_clar -h

Then perform segmentation and feature extraction of full resolution CLARITY data:

$ miracl flow seg -h

Or structure tensor analysis:

$ miracl flow sta -h

Note that not all functions have tutorials yet. . .we are working on it!!!

3.3.1 ACE Workflow

AI-based Cartography of Ensembles (ACE) pipeline highlights:

1. Cutting-edge vision transformer and CNN-based DL architectures trained on very large LSFM datasets (link to
sample data and refer to example section) to map brain-wide neuronal activity.

2. Optimized cluster-wise statistical analysis with a threshold-free enhancement approach to chart subpopulation-
specific effects at the laminar and local level, without restricting the analysis to atlas-defined regions (link to
sample data and refer to example section).

3. Modules for providing DL model uncertainty estimates and fine-tuning.

4. Interface with MIRACL registration to create study-specific atlases.

5. Ability to account for covariates at the cluster level and map the connectivity between clusters of activations.

Main Inputs

Control and Treated directories, containing whole-brain 3D LSFM datasets for multiple subjects. OR A single directory
containing a single subject’s whole-brain 3D LSFM dataset.

24 Chapter 3. Tutorials

https://drive.google.com/drive/folders/14xWysQshKxwuTDWEQHT3OGKcH16scrrQ
https://drive.google.com/drive/folders/14xWysQshKxwuTDWEQHT3OGKcH16scrrQ
https://drive.google.com/drive/folders/1IgN9fDEVNeeT0a_BCzy3nReJWfxbrg72
https://drive.google.com/drive/folders/1IgN9fDEVNeeT0a_BCzy3nReJWfxbrg72

MIRACL Documentation, Release 2.2.6

CLI

To get more information about the workflow and its required arguments use the following command on the cli:

$ miracl flow ace -h

The following information will be printed to the terminal:

usage: miracl ace (-s SINGLE_TIFF_DIR |
(-c CONTROL_BASE_DIR CONTROL_TIFF_DIR_EXAMPLE -e EXPERIMENT_BASE_DIR␣

→˓EXPERIMENT_TIFF_DIR_EXAMPLE))
-sao SA_OUTPUT_FOLDER -sam {unet,unetr,ensemble}
(--overwrite | --no-overwrite)

1) Segments images with ACE
2) Registers tissue cleared data (down-sampled nifti images) to Allen Reference mouse␣

→˓brain atlas
3) Voxelizes high-resolution segmentation maps to downsample into Allen atlas␣

→˓resolution
4) Warps voxelied segmentation maps from native space to Allen atlas
5) Generates group-wise heatmaps of cell density using the average of voxelized and␣

→˓warped segmentation maps in each group
6) Computes group-level statistics/correlation using cluster-wise analysis on␣

→˓voxelized and warped segmentation maps

Single or multi method arguments:
-s SINGLE_TIFF_DIR, --single SINGLE_TIFF_DIR

path to single raw tif/tiff data folder
-c CONTROL_BASE_DIR CONTROL_TIFF_DIR_EXAMPLE, --control CONTROL_BASE_DIR CONTROL_TIFF_
→˓DIR_EXAMPLE

FIRST: path to base control directory. SECOND: example
path to control subject tiff directory

-e EXPERIMENT_BASE_DIR EXPERIMENT_TIFF_DIR_EXAMPLE, --experiment EXPERIMENT_BASE_DIR␣
→˓EXPERIMENT_TIFF_DIR_EXAMPLE

FIRST: path to base experiment directory. SECOND:
example path to experiment subject tiff directory

--overwrite overwrite existing output files for comparison
workflow

--no-overwrite do not overwrite existing output files for comparison
workflow. This flag can be used to run only the stats
analysis (if the subject-only steps have already been
run).

required arguments:
-sao SA_OUTPUT_FOLDER, --sa_output_folder SA_OUTPUT_FOLDER

path to output file folder
-sam {unet,unetr,ensemble}, --sa_model_type {unet,unetr,ensemble}

model architecture

utility arguments:
-ua U_ATLAS_DIR, --u_atlas_dir U_ATLAS_DIR

path of atlas directory (default:
'/code/atlases/ara/')

(continues on next page)

3.3. Workflows 25

MIRACL Documentation, Release 2.2.6

(continued from previous page)

--

Use -hv or --help_verbose flag for more verbose help and view other ACE modules arguments

Note: There are a number of optional arguments including TFCE cluster-wise analysis parameters that can be provided
to the respective function invoked by the workflow. These arguments have been ommitted here for readability but can
be viewed by running miracl flow ace -hv.

Flag Parameter Type Description
-s, --single SINGLE_TIFF_DIR str path to raw tif/tiff data folder
-c, --control CONTROL_BASE_DIR, CON-

TROL_TIFF_DIR_EXAMPLE
(str,
str)

path to base control directory, example path
to control subject tiff directory

-e, --
experiment

EXPERIMENT_BASE_DIR, EX-
PERIMENT_TIFF_DIR_EXAMPLE

(str,
str)

path to base experiment directory, example
path to experiment subject tiff directory

-sam, --
sa_model_type

{unet,unetr,ensemble} str model architecture

--overwrite | --
no-overwrite

bool whether to overwrite existing output files for
comparison workflow

Main outputs

clar_allen_reg # registration output / pre-liminary files
conv_final # conversion (tiff to nifti) output
reg_final # main registration output
seg_final # segmentation output including model(s) outputs and uncertainty estimates
vox_final
warp_final
heatmap_final
cluster_final # cluster-wise analysis output including p_value and f_stats maps
corr_final # correlation analysis output including correlation maps and p_value maps

Executes:

seg/ace_interface.py
conv/miracl_conv_convertTIFFtoNII.py
reg/miracl_reg_clar-allen.sh
seg/miracl_seg_voxelize_parallel.py
reg/miracl_reg_warp_clar_data_to_allen.sh
stats/miracl_stats_heatmap_group.py
stats/miracl_stats_ace_interface.py

26 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

Example of running ACE on single subject (segmenation + registration + voxelization + warping)
(link to sample data):

$ miracl flow ace \
-s ./non_walking/Newton_HC1/cells/ \
-sao ./output_dir \
-sam unet \
--overwrite

Example of running ACE flow on multiple subjects:

$ miracl flow ace \
-c ./non_walking/ ./non_walking/Newton_HC1/cells/ \
-e ./walking/ ./walking/Newton_UI1/cells/ \
-sao ./output_dir \
-sam unet \
--overwrite

Example of running only ACE segmentation module on one single subject (link to sample data):

$ miracl seg ace \
-sai ./Ex_561_Em_600_stitched/ \
-sao ./output_dir \
-sam unetr

Example of running only ACE cluster wise analysis on voxelized and warped segmentation maps
(link to sample data):

$ miracl stats ace \
-c ./ctrl/ \
-e ./treated/ \
-sao ./output_dir \

Jupyter notebook

An accompanying Jupyter notebook for this tutorial can be found here.

3.3.2 CLARITY whole-brain registration to Allen Atlas

The registration workflow relies on an autofluorescence channel input (tiff files), and can perform whole-brain or hemi-
sphere registrations to the Allen Atlas.

This workflow performs the following tasks:

1. Sets orientation of input data using a GUI

2. Converts TIFF to NII

3. Registers CLARITY data (down-sampled images) to Allen Reference mouse brain Atlas

3.3. Workflows 27

MIRACL Documentation, Release 2.2.6

4. Warps Allen annotations to the original high-res CLARITY space

5. Warps the higher-resolution CLARITY to Allen space (if chosen)

6. Test data

7. A test dataset (CLARITY autofluorescence channel) for registration is found here under data: https://www.
dropbox.com/sh/i9swdedx7bsz1s8/AABpDmmN1uqPz6qpBLYLtt8va

Main outputs

File Description
reg_final/clar_allen_space.nii.gz CLARITY data in Allen reference space
reg_final/clar_downsample_res{vox}um.nii.gz CLARITY data downsampled and oriented to

‘standard’
reg_final/annotation_hemi_{hemi}_{vox}um_clar_downsample.
nii.gz

Allen labels registered to downsampled CLAR-
ITY

reg_final/annotation_hemi_{hemi}_{vox}um_clar_vox.
tif

Allen labels registered to oriented CLARITY

reg_final/annotation_hemi_{hemi}_{vox}um_clar.
tif

Allen labels registered to original (full-
resolution) CLARITY

GUI

Run:

$ miraclGUI

and choose CLARITY-Allen Registration from the Workflows tab:

28 Chapter 3. Tutorials

https://www.dropbox.com/sh/i9swdedx7bsz1s8/AABpDmmN1uqPz6qpBLYLtt8va
https://www.dropbox.com/sh/i9swdedx7bsz1s8/AABpDmmN1uqPz6qpBLYLtt8va

MIRACL Documentation, Release 2.2.6

Or run:

$ miracl flow reg_clar

Choose the input tiff folder with the auto fluorescence channel from the pop-up menu:

3.3. Workflows 29

MIRACL Documentation, Release 2.2.6

The following GUI will appear which opens the data and lets you set its orientation manually:

30 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

You can navigate through the data using the bar bellow, by specifying the slice number or using the arrows:

First choose the data plane (axial, coronal or sagittal):

3.3. Workflows 31

MIRACL Documentation, Release 2.2.6

Then choose the orientation at the top and right of the image:

Next, choose the orientation for scrolling through the slices (going into the page), can confirm the orientation by
changing the image number at the bottom (enter higher number and press Enter), or using the Next or Prev image
buttons:

Finally close the GUI:

Next, set the tiff conversion parameters:

32 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

Conversion parameters description:

Parameter Description Default
out nii Output nifti name clarity
downsample ratio Downsample factor for conversion 5
channel # Number for extracting single chan-

nel from multiple channel data
(leave blank if single channel
data/tiff files)

0

channel prefix String before channel number in file
name (leave blank if single chan-
nel). For example, if tiff file
name has _C001_.tif for channel
1 and _C002_.tif for channel 2, to
choose channel 1 if it’s the auto flu-
orescence channel:

• Chan number would be: 1
• Chan prefix would be: C00

Channel prefix not invoked if not
provided

channel name Output channel name eyfp
in-plane res Original resolution in x-y plane in

um
5

z res Thickness (z-axis resolution/spacing
between slices) in um

5

center Center of nifti file 0 0 0

Next, choose the registration options:

3.3. Workflows 33

MIRACL Documentation, Release 2.2.6

Registration parameters description:

Parameter Description Default
Hemi Warp Allen labels with hemisphere

split (Left labels are different from
Right labels) or combined (Left and
Right lables are the same i.e. mir-
rored). Accepted inputs are:

• combined
• split

combined

Labels resolution [vox] Voxel size/resolution of labels in um
accepted inputs are: 10, 25 or 50

10

olfactory bulb
If olfactory bulb is in-
cluded in the dataset.
Accepted inputs are:

0 (not included) 1 (included)

0

Side Only if registering hemisphere,
else leave blank. Accepted inputs
are:
rh (right hemisphere) lh (left hemi-
sphere)

None

34 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

Command-line

Usage:

$ miracl flow reg_clar -f [Tiff folder]

Example:

$ miracl flow reg_clar -f my_tifs -n "-d 5 -ch autofluo" -r "-o ARS -m combined -v 25"

Arguments (required):

f. Input Clarity tif dir/folder

Optional arguments (remember the quotes):

Conversion to nii (invoked by -n " "):

d. [Downsample ratio (default: 5)]
cn. [chan # for extracting single channel from multiple channel data (default: 0)]
cp. [chan prefix (string before channel number in file name). ex: C00]
ch. [output chan name (default: eyfp)]
vx. [original resolution in x-y plane in um (default: 5)]
vz. [original thickness (z-axis resolution / spacing between slices) in um (default: 5)␣
→˓]
c. [nii center (default: 5.7 -6.6 -4) corresponding to Allen atlas nii template]

Registration (invoked by -r " "):

o. Orient code (default: ALS)
to orient nifti from original orientation to "standard/Allen" orientation

m. Warp allen labels with hemisphere split (Left different than Right labels) or␣
→˓combined (L & R same labels / Mirrored)

accepted inputs are: <split> or <combined> (default: combined)
v. Labels voxel size/Resolution of labels in um

accepted inputs are: 10, 25 or 50 (default: 10)
l. image of input Allen Labels to warp (default: annotation_hemi_split_10um.nii.gz -␣
→˓which are at a resolution of 0.01mm/10um)

input could be at a different depth than default labels
If l. is specified (m & v cannot be specified)

Visualize results

Run:

$ miracl reg check

Usage:

$ miracl reg check -f [reg_final_folde r] -v [visualization_software] -s [reg_space_
→˓(clarity_or_allen)]

Example:

3.3. Workflows 35

MIRACL Documentation, Release 2.2.6

$ miracl reg check -f reg_final -v itk -s clarity

Arguments:

Required:

-f, Input final registration folder

Optional:

-v, Visualization software: itkSNAP 'itk' (default) or freeview 'free'
-s, Registration Space of results: clarity (default) or allen

3.3.3 STA workflow

Run the structural tensor analysis (STA) workflow for fiber quantification and tracking.

Attention: Run workflow after running the CLARITY-Allen registration first

Workflow for STA:

1. Converts Tiff stack to nii incl. down-sampling

2. Uses registered labels to create a seed mask at the depth (ontology level) of the desired label (seed)

3. Creates a brain mask

4. Runs STA analysis using the seed and brain masks

5. Computes virus intensities for all labels at that depth

Executes:

conv/miracl_conv_convertTIFFtoNII.py
lbls/miracl_lbls_get_graph_info.py
lbls/miracl_lbls_generate_parents_at_depth.py
utils/miracl_extract_lbl.py
utils/miracl_create_brainmask.py
sta/miracl_sta_track_primary_eigen.py
lbls/miracl_lbls_stats.py

Main Outputs

File Description
clarity_sta_{label}_seed/dog{dog}_gauss{gauss}/
filter_ang{angle}.trk

Tract file

virus_signal_stats_depth_{depth}.csv Virus stats csv
sta_streamlines_density_stats_depth_{depth}.csv Streamline density stats

csv

36 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

GUI

From the main GUI (invoked with: $ miraclGUI), select Workflows -> CLARITY STA:

The following window will appear:

3.3. Workflows 37

MIRACL Documentation, Release 2.2.6

Hint: To open the STA workflow menu directly use: $ miracl flow sta

Click on Select Input tiff folder and choose the folder that contains the virus channel from the dialog window.

38 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

Then choose the registered Allen labels inside the final registration folder (reg_final) from the dialog window by
clicking on Select CLARITY final registration folder.

Next choose the output file name (Output nii name), e.g. Mouse05. Our script will automatically append down-
sample ratio and channel info to the given name.

Set the tracking parameters:

Parameter Description Default
Seed label abbreviation From Allen atlas ontology, for the

seed region. Examples:
Combined hemispheres:

• CP for Caudoputamen
• PL for Prelimbic Area

Right hemisphere:
• RCP for Right Caudoputamen
• RPL for Right Prelimbic Area

Required. Function will exit with er-
ror 1 if not provided.

hemi Labels hemisphere. Accepted inputs
are:

• combined` (both)
• split (left or right)

combined

Derivative of Gaussian (dog) sigma Example: 1 0.5,1.5
Gaussian smoothing sigma Example: 0.5 0.5,2
Tracking angle threshold Example: 35 25,35
Use 2nd order runge-kutta method
for tracking

Use 2nd order runge-kutta:
• 0 (don’t use)
• 1 (use)

0

And the tiff conversion parameters:

Parameter Description Default
Downsample ratio Set the downsample ratio. 5
chan # For extracting single channel from

multiple channel data.
1

chan prefix String before channel number in file
name. Example:

C00

Resolution (x,y) Original resolution in x-y plane in
um.

5

Thickness Original thickness (z-axis resolu-
tion/spacing between slices) in um.

5

Downsample in z Downsample in z dimension. Bi-
nary:

• 0 (no)
• 1 (yes)

1

Users can also input their own brain mask, as well as their own seeding mask. Both masks would respectively replace
the automatically generated brain mask and regional mask used for the tractography. Users also have the option to
dilate the seed mask across any of the three dimensions, by a value (indicated by the Dilation factor fields).

3.3. Workflows 39

MIRACL Documentation, Release 2.2.6

Attention: Note that the following parameters are required:

• tiff folder

• output nii name

• Seed label abbreviation

• CLARITY final registration folder

• hemi

• Derivative of Gaussian

• Gaussian smoothing sigma

• Tracking angle threshold

After choosing the parameters, first press Enter to save them and then Run to start the workflow.

Command-line

Usage:

$ miracl flow sta -f [Tiff folder] -o [output nifti] -l [Allen seed label] -m [␣
→˓hemisphere] -r [Reg final dir] -d [downsample ratio]

Example:

$ miracl flow sta -f my_tifs -o clarity_virus -l PL -m combined -r clar_reg_final -d 5 -
→˓c AAV g 0.5 -k 0.5 -a 25

Or for right PL:

$ miracl flow sta -f my_tifs -o clarity_virus -l RPL -m split -r clar_reg_final -d 5 -c␣
→˓AAV -g 0.5 -k 0.5 -a 25

Arguments:

arguments (required):
-f: Input Clarity tif folder/dir (folder name without spaces)
-o: Output nifti
-l: Seed label abbreviation (from Allen atlas ontology)
-r: CLARITY final registration folder
-m: Labels hemi
-g: Derivative of Gaussian (dog) sigma
-k: Gaussian smoothing sigma
-a: Tracking angle threshold

optional arguments:
-d: Downsample ratio (default: 5)
-c: Output channel name
-n: Chan number for extracting single channel from multiple channel data (default: 0)
-p: Chan prefix (string before channel number in file name). ex: C00
-x: Original resolution in x-y plane in um (default: 5)
-z: Original thickness (z-axis resolution/spacing between slices) in um (default: 5)

(continues on next page)

40 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

(continued from previous page)

-b: Brain mask (to replace brain mask automatically generated by workflow)
-u: Seed mask (in place of regional seed mask generated by workflow)
-s: Step length
--downz: Downsample in z
--dilationfx: Dilation factor for x (factor to dilate seed label by)
--dilationfy: Dilation factor for y (factor to dilate seed label by)
--dilationfz: Dilation factor for z (factor to dilate seed label by)
--rk: Use 2nd order range-kutta method for tracking (default: 0)
--out_dir: Output directory

Jupyter notebook

An accompanying Jupyter notebook for this tutorial can be found here.

3.3.4 CLARITY whole-brain segmentation

There are multiple segmentation functions for different data (stains/channels):

• virus

• cFos

• sparse

• nuclear

The segmentation workflow relies on an output from the registration workflow, but the segmentation wrapper function
can be run without running the registration workflow.

This workflow performs the following tasks:

1. Segments neurons in cleared mouse brain of sparse or nuclear stains in 3D

2. Voxelizes segmentation results into density maps with Allen Atlas resolution

3. Computes features of segmented image and summarizes them per label

It executes:

seg/miracl_seg_clarity_neurons_wrapper.sh
seg/miracl_seg_voxelize_parallel.py
seg/miracl_seg_feat_extract.py

3.3. Workflows 41

MIRACL Documentation, Release 2.2.6

Main outputs

File Description
segmentation/seg.{tif,mhd} or seg_nuclear.{tif,mhd} Segmentation image with all labels (cells)
segmentation/seg_bin.{tif,mhd} or seg_bin_nuclear.
{tif,mhd}

Binarized segmentation image

voxelized_seg.{tif,nii} Segmentation results voxelized to ARA reso-
lution

voxelized_seg_bin.{tif,nii} Binarized version
clarity_segmentation_features_ara_labels.csv Segmentation features summarized per ARA

labels

Hint: Results can be opened in Fiji for visualization

GUI

Select from the main GUI menu (invoked from the cli: $ miraclGUI) or run:

$ miracl flow seg

The following window will appear:

Click on Select registered labels (..clar_vox.tif) in the reg_final dir to choose the registered la-
bels annotation_hemi_{side}_**um_clar_vox.tif to summarize segmentation features where:

• {side} -> combined or split

• ** is the resolution -> 10, 25 or 50

The following window will appear:

42 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

Next, click on select input tiff dir to select folder with Thy1-YFP or other channel:

3.3. Workflows 43

MIRACL Documentation, Release 2.2.6

Lastly set the segmentation parameters:

Parameter Description Default
seg type Channel type:

• virus
• cFos
• sparse (like Thy1 YFP)
• nuclear (like PI)

virus

channel prefix Channel prefix and number if
multiple channels. Example:
Filter0001

None

labels voxel size Registered labels voxel size in um:
• 10
• 25
• 50

10

Click Enter and Run to start the segmentation process.

44 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

Command-line

Usage:

$ miracl flow seg -f [Tiff_folder]

Example:

$ miracl flow seg -f my_tifs -t nuclear -s "-p C001" -e "-l reg_final/annotation_hemi_
→˓combined_25um_clar_vox.tif"

Arguments:

arguments (required):

f. Input Clarity tif folder/dir [folder name without spaces]
t. Channel type: sparse (like Thy1 YFP) or nuclear (like PI)

optional arguments (don't forget the quotes):

Segmentation (invoked by -s " "):
p. Channel prefix & number if multiple channels (like Filter0001)

Feature extraction (invoked by -e " "):
l. Allen labels (registered to clarity) used to summarize features

reg_final/annotation_hemi_{hemi}_{vox}um_clar_vox.tif

3.4 Conversion

Functions to convert between image file formats e.g. converting tiff image files to nifti format.

Note that not all functions have tutorials yet. . .we are working on it!!!

3.4.1 Tiff to Nifti

Function to convert Tiff images to Nifti format for analysis or visualization.

GUI

Run:

$ miracl conv tiff_nii

The following window will open:

3.4. Conversion 45

MIRACL Documentation, Release 2.2.6

Click on Select Input tiff folder to choose the input tiff folder:

46 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

Next set the desired parameters or use the default by leaving the fields blank:

3.4. Conversion 47

MIRACL Documentation, Release 2.2.6

Parameters Description Default
Out nii name Output file name. clarity
Downsample ratio Downsample factor for nifti images. 5
chan # and prefix Use if tiff files have more

than one channel. For ex-
ample, given the names
10-04-06_R923_06R1ca_647_100p350_na144_UltraII_**C001**_xyz-Table
Z1284.ome.tif for channel 1 and
10-04-06_R923_06R1ca_647_100p350_na144_UltraII_**C002**_xyz-Table
Z1284.ome.tif for channel 2 with
the latter being the desired channel
for conversion, chan # would be 2
and chan prefix would be C00.

Not invoked if not provided

Out chan name Output channel name. eyfp
Resolution (x,y) Original resolution in x-y plane in

um.
5

Thickness Original thickness (z-axis resolu-
tion/spacing between slices) in um.

5

center Center of Nifti file. 0 0 0
Downsample in z Down-sample in z dimension. Bi-

nary:
• 0 (no)
• 1 (yes)

1

Prev Downsampling Previous downsample ratio if al-
ready downsampled. Accepted in-
puts are:

• 0 (downsampled)
• 1 (not downsampled)

1

After choosing the parameters press Enter to save them then Run to start the conversion process.

Tip: After the conversion is done, nifti (nii/nii.gz) files can be visualized using the ITKsnap software

Command-line

Usage:

$ miracl conv tiff_nii -f [Tiff_folder]

Example:

miracl conv tiff_nii -f my_tifs -o stroke2 -cn 1 -cp C00 -ch Thy1YFP -vx 2.5 -vz 5

Required arguments:

-f dir, --folder dir Input CLARITY TIFF folder/dir

Optional arguments:

48 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

-d, --down Down-sample ratio (default: 5)
-cn, --channum Chan # for extracting single channel from multiple channel data␣
→˓(default: 1)
-cp, --chanprefix Chan prefix (string before channel number in file name). ex: C00
-ch, --channame Output chan name (default: eyfp)
-o, --outnii Output nii name (script will append downsample ratio & channel info␣
→˓to given name)
-vx, --resx Original resolution in x-y plane in um (default: 5)
-vz, --resz Original thickness (z-axis resolution / spacing between slices) in␣
→˓um (default: 5)
-c [...], --center [...]

Nii center (default: 0,0,0) corresponding to Allen atlas nii␣
→˓template
-dz, --downzdim Down-sample in z dimension, binary argument, (default: 1) => yes
-pd, --prevdown Previous down-sample ratio, if already down-sampled
-h, --help Show this help message and exit

3.5 Registration

Registration functions for e.g. registering data (down-sampled images) to Allen Reference mouse brain atlas.

Note that not all functions have tutorials yet. . .we are working on it!!!

3.5.1 CLARITY-Allen registration

This function will do the following:

1. Registers CLARITY data (down-sampled images) to Allen Reference mouse brain atlas

2. Warps Allen annotations to the original high-res CLARITY space

3. Warps the higher-resolution CLARITY to Allen space

GUI

To open the main registration menu, open MIRACL’s main menu first by running:

$ miraclGUI

MIRACL’s main menu will open:

3.5. Registration 49

MIRACL Documentation, Release 2.2.6

Select the Registration tab on the left for the main registration menu.

The main registration window will look like this:

50 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

From here you can select CLARITY-Allen to start the registration. The Reg options menu will open:

3.5. Registration 51

MIRACL Documentation, Release 2.2.6

Tip: To open the above Reg options menu directly, run: $ miracl reg clar_allen

The registration will be run on downsampled CLARITY Nii images. You can provide the folder containing these files
in the first field. This parameter is required to run the registration. You can use MIRACL's conversion methods to
create the downsampled files if you do not have them yet.

Flag Parameter Description Default
-i Input down-sampled

CLARITY Nii
Preferably auto-
fluorescence channel
data (or Thy1_EYFP if
no auto chan). File name
should have **x_down
like 05x_down (meaning
5x downsampled).
Example:

• combined
• split

Required. Script exits
with error 1 if not pro-
vided.

All remaining parameters are optional. If left blank, their respective default values will be used:

52 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

Flag Parameter Description Default
-r Output directory Directory the output (re-

sults) will be written to.
<working_directory>/
reg_final

-o Orient code Code to orient nifti from
original orientation to
‘standard/Allen’ orienta-
tion.

ALS

-m Labels hemi Chose to register to one or
both hemispheres. Warps
Allen labels with hemi-
sphere split (L differ from
R labels) or combined (L
and R have the same la-
bels i.e. are mirroed). Ac-
cepted inputs are:

• combined
• split

combined

-v Labels resolution [vox] Labels voxel
size/resolution in um.
Accepted inputs are:

• 10
• 25
• 50

10

-b Olfactory bulb included Specify whether the olfac-
tory bulb is included in
brain. Accepted inputs
are:

• 0 (not included)
• 1 (included)

0

-s Side Provide this parameter if
you are only registering
one hemisphere instead of
the whole brain. Accepted
inputs are:

• rh (right hemi-
sphere)

• lh (left hemisphere)

None

-p Extra int correct If utilfn intensity correc-
tion has already been run,
skip correction inside reg-
istration. Accepted inputs
are:

• 0 (don’t skip)
• 1 (skip)

0

After providing the parameters click Enter to save them and Run to start the registration process.

Once the registration is done the final files will be located in the output folder (default: <working_directory>/

3.5. Registration 53

MIRACL Documentation, Release 2.2.6

reg_final). Files created in intermediate steps will be located in a folder called <working_directory>/
clar_allen_reg.

Command-line

The command-line version has additional functionality that is not included in the GUI version:

-l, input Allen labels to warp: input labels could be at a different depth than default␣
→˓labels.

-m and -v flags cannot be used if this parameter is specified manually (default:␣
→˓annotation_hemi_combined_10um.nii.gz)
-a, input custom Allen atlas: for example for registering sections
-f, save mosaic figure (.png) of Allen labels registered to CLARITY (default: 1).
-w, warp high-res clarity to Allen space (default: 0).

Attention: Note that the above listed -i parameter (input down-sampled CLARITY Nii) is also required for
the command-line

Usage:

$ miracl reg clar_allen -i [input_clarity_nii_folder] -o [orientation_code] -m [␣
→˓hemispheres] -v [labels_resolution] -l [input_labels] -s [side_if_hemisphere_
→˓only] -b [olfactory_buld_included]

Example:

$ miracl reg clar_allen -i downsampled_niftis/SHIELD_03x_down_autoflor_chan.nii.gz -o␣
→˓ARI -m combined -b 1

Jupyter notebook

An accompanying Jupyter notebook for this tutorial can be found here.

3.5.2 MRI whole-brain registration to Allen Atlas

This registration method performs the following tasks:

1. Registers in-vivo or ex-vivo MRI data to Allen Reference mouse brain Atlas

2. Warps Allen annotations to the MRI space

54 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

GUI

Invoke with $ miraclGUI and select from main menu or run:

$ miracl reg mri_allen_nifty

The following window will open:

Click on Select In-vivo or Ex-vivo MRI and choose the input MRI nii (preferable T2-w) using the dialog win-
dow. Then set the registration options:

3.5. Registration 55

MIRACL Documentation, Release 2.2.6

Parameter Description Default
Orient code Orient nifti from original orientation

to ‘standard/Allen’ orientation.
RSP

Labels Hemi Warp allen labels with hemisphere
split (Left different than Right la-
bels) or combined (Left and Right
labels are the same/mirrored). Ac-
cepted inputs are:

• split
• combined

combined

Labels resolution [vox] Labels voxel size/resolution in um.
Accepted inputs are:

• 10
• 25
• 50

10

Olfactory bulb included Specify whether the olfactory bulb is
included in brain. Accepted inputs
are:

• 0 (not included)
• 1 (included)

0

skull strip Strip skull. Accepted inputs are:
• 0 (don’t strip)
• 1 (strip)

1

No orient No orientation needed (input image
in ‘standard’ orientation). Accepted
inputs are:

• 0 (orient)
• 1 (don’t orient)

0

Click Enter and Run to start the registration process.

Command-line

Usage:

$ miracl reg mri_allen_nifty -i [input invivo or exvivo MRI nii] -o [orient code] -m␣
→˓[hemi mirror] -v [labels vox] -l [input labels] -b [olfactory bulb] -s [skull␣
→˓strip] -n [no orient needed]

Example:

$ miracl reg mri_allen_nifty -i inv_mri.nii.gz -o RSP -m combined -v 25

Arguments:

56 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

arguments (required):

i. input MRI nii
Preferably T2-weighted

optional arguments:

o. orient code (default: RSP)
to orient nifti from original orientation to "standard/Allen" orientation

m. hemisphere mirror (default: combined)
warp allen labels with hemisphere split (Left different than Right labels) or␣

→˓combined (L & R same labels / Mirrored)
accepted inputs are: <split> or <combined>

v. labels voxel size/Resolution in um (default: 10)
accepted inputs are: 10, 25 or 50

l. input Allen labels to warp (default: annotation_hemi_combined_10um.nii.gz)
input labels could be at a different depth than default labels
If l. is specified (m & v cannot be specified)

b. olfactory bulb included in brain, binary option (default: 0 -> not included)
s. skull strip or not, binary option (default: 1 -> skull-strip)
f. FSL skull striping fractional intensity (default: 0.3), smaller values give larger␣

→˓brain outlines
n. No orientation needed (input image in "standard" orientation), binary option␣

→˓(default: 0 -> orient)

3.6 Stats

This module consists of multiple sub-modules to apply statistical and correlation analysis to the data.

Note that not all functions have tutorials yet. . .we are working on it!!!

3.6.1 ACE Cluster Only

Apply cluster-wise analysis including a cluster-wise TFCE test and correlation analysis on voxelized and warped seg-
mentation maps.

3.6. Stats 57

MIRACL Documentation, Release 2.2.6

Main Inputs

Control and Treated directories, containing voxelized and warped segmentation maps for each group.

CLI

To get more information about the workflow and its required arguments use the following command on the CLI:

$ miracl stats ace -h

Example usage (link to sample data):

$ miracl stats ace \
-c ./ctrl/ \
-e ./treated/ \
-sao ./output_dir \
-n 1000 \
-a ./atlas/ \
-r 25 \
-sfwhm 3 \
-start 0.05 \
-step 5 \
-h 2 \
-e 0.5

Flag Parameter Type Description Default
-c, --control CON-

TROL_BASE_DIR
str path to base control directory None (re-

quired)
-e, --experiment EXPERI-

MENT_BASE_DIR
str path to base experiment directory None (re-

quired)
-sao, --
sa_output_folder

SA_OUTPUT_FOLDERstr path to output directory None (re-
quired)

-n, --num_perm NUM_PERM int number of permutations 100
-a, --atlas_dir ATLAS_DIR str path to atlas directory miracl_home
-r, --img_resolution IMG_RESOLUTION int image resolution (atlas resolution 10 or 25

um)
25

-sfwhm, --
smoothing_fwhm

SMOOTH-
ING_FWHM

int fwhm of Gaussian kernel in pixel 3

-start, --tfce_start TFCE_START float tfce threshold start 0.01
-step, --tfce_step TFCE_STEP float tfce threshold step 10
-h, --tfce_h TFCE_H float tfce H power 2
-e, --tfce_e TFCE_E float tfce E power 0.5
-c, --cpu_load CPU_LOAD float percent of cpus used for parallelization 0.9
-p, ---step_down_p STEP_DOWN_P float step down p value 0.3
-m, --mask_thr MASK_THR int percentile to be used for binarizing differ-

ence of the mean
95

58 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

Jupyter notebook

An accompanying Jupyter notebook for this tutorial can be found here.

3.7 Segmentation

Functions to segment tiff image files.

Note that not all functions have tutorials yet. . .we are working on it!!!

3.7.1 ACE Segmentation Function

Cutting edge vision transformer and CNN-based DL architectures trained on very large LSFM datasets to map cFos
brain-wide.

CLI

To look at the arguments that need to be provided to the function, invoke the help menu using:

$ miracl seg ace -h

The following menu will be printed to the terminal:

usage: miracl ace [-h] -sai SA_INPUT_FOLDER -sao SA_OUTPUT_FOLDER -sam
{unet,unetr,ensemble} [-sas height width depth]
[-sar X-res Y-res Z-res] [-saw SA_NR_WORKERS]
[-sac SA_CACHE_RATE] [-sasw SA_SW_BATCH_SIZE] [-samc] [-sav]
[-sau]

AI-based Cartography of Ensembles (ACE) segmentation method

optional arguments:
-h, --help show this help message and exit
-sai SA_INPUT_FOLDER, --sa_input_folder SA_INPUT_FOLDER

path to raw tif/tiff data folder
-sao SA_OUTPUT_FOLDER, --sa_output_folder SA_OUTPUT_FOLDER

path to output file folder
-sam {unet,unetr,ensemble}, --sa_model_type {unet,unetr,ensemble}

model architecture
-sas height width depth, --sa_image_size height width depth

image size (type: int; default: fetched from image
header)

-sar X-res Y-res Z-res, --sa_resolution X-res Y-res Z-res
voxel size (type: _validate_vox_res)

-saw SA_NR_WORKERS, --sa_nr_workers SA_NR_WORKERS
number of cpu cores deployed to pre-process image
patches in parallel (type: int; default: 4)

-sac SA_CACHE_RATE, --sa_cache_rate SA_CACHE_RATE
percentage of raw data that is loaded into cpu during
segmentation (type: float; default: 0.0)

-sasw SA_SW_BATCH_SIZE, --sa_sw_batch_size SA_SW_BATCH_SIZE
(continues on next page)

3.7. Segmentation 59

MIRACL Documentation, Release 2.2.6

(continued from previous page)

number of image patches being processed by the model
in parallel on gpu (type: int; default: 4)

-samc, --sa_monte_dropout
use Monte Carlo dropout (default: False)

-sav, --sa_visualize_results
visualizing model output after predictions (default:
False)

-sau, --sa_uncertainty_map
enable map (default: False)

Flag Parameter Type Description Default
-sai, --
sa_input_folder

SA_INPUT_FOLDERstr path to raw tif/tiff data folder None (required)

-sao, --
sa_output_folder

SA_OUTPUT_FOLDERstr path to output file folder None (required)

-sam, --
sa_model_type

{unet,unetr,ensemble}str model architecture None (required)

-sas, --
sa_image_size

height width
depth

int image size; provided as three arguments fetched from
image header

-sar, --
sa_resolution

X-res Y-res Z-
res

int voxel resolution; provided as three arguments None (required)

-saw, --
sa_nr_workers

SA_NR_WORKERSint number of cpu cores deployed to pre-process
image patches in parallel

4

-sac, --
sa_cache_rate

SA_CACHE_RATEfloat percentage of raw data that is loaded into cpu
during segmentation

0.0

-sasw,--
sa_sw_batch_size

SA_SW_BATCH_SIZEint number of image patches being processed by
the model in parallel on gpu

4

-samc,--
sa_monte_dropout

True/False bool use Monte Carlo dropout False

-sav, --
sa_visualize_results

True/False bool visualizing model output after predictions False

-sau, --
sa_uncertainty_map

True/False bool enable map False

Note: The -sa in the flag part stands for segmentation ACE.

Example usage:

$ miracl seg ace \
-sai ./walking/subject_01/cells/ \
-sao ./output_dir \
-sam unet

60 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

3.8 Utilities

A collection of utility functions.

Note that not all functions have tutorials yet. . .we are working on it!!!

3.8.1 Intensity correction

Intensity correction for data with inhomogeneity issues. Performs correction on CLARITY tiff data in parallel using
N4.

1. Creates a downsampled nifti from the tiff data

2. Runs N4 ‘bias field’/intensity correction on the nifti file

3. Up-samples the output bias field and applies it to the tiff data

Command-line

Usage:

$ miracl utils int_corr -f [input_tiff_folder] -od [output_folder] -s [shrink_
→˓factor] -cn [channel_num] -cp [channel_prefix] -p [power]

Example:

$ miracl utils int_corr -f tiff_folder -od bias_corr_folder

Required arguments:

Flags Description Default Default
-f, –folder Input CLARITY TIFF folder/dir No default. Input folder must be provided by user.

Optional arguments:

3.8. Utilities 61

MIRACL Documentation, Release 2.2.6

Flags Description Default
-od, --outdir Output folder name int_corr_tiffs
-cn, --
channum

Chan # for extracting single channel from multiple channel data 1

-cp, --
chanprefix

Chan prefix (string before channel number in file name). Example: C00 None

-ch, --
channame

Output chan name AAV

-on, --outnii Output nii name (script will append downsample ratio & channel info to given
name)

-vx, --resx Original resolution in x-y plane in um 5
-vz, --resz Original thickness (z-axis resolution/spacing between slices) in um 5
-m, --maskimg Mask images before correction 1
-s, --segment Perform level-set seg using brain mask to get a dilated one 0
-d, --down Downsample/shrink factor to run bias corr on downsampled data 5
-n, --noise Noise parameter for histogram sharpening - deconvolution 0.005
-b, --bins Histogram bins 200
-k, --fwhm FWHM for histogram sharpening - deconvolution 0.3
-l, --levels Number of levels for convergence

4
-it, --iters Number of iterations per level for convergence 50
-t, --thresh Threshold per iteration for convergence

0
-p, --mulpower Use the bias field raised to a power of p to enhance its effects 1.0

3.9 HPC/SLURM clusters

MIRACL was built with HPC/SLURM clusters in mind. We recommend Singularity as it is well suited to run in a
cluster environment. We provide a Singularity container of MIRACL's latest version that can be pulled to a node
directly from our online repo.

We provide tutorials on how to use MIRACL on Compute Canada and Sherlock (supercomputer at Stanford university)
but the principles explained here will be similar to other SLURM clusters.

Note: If you would like to add a tutorial for a particular cluster that you are working with that is missing here, we invite
you to add it to this section by submitting a PR (note that we write Sphinx documentation in .rst format) through our
official GitHub.

3.9.1 Running MIRACL on Compute Canada

This tutorial highlights the registration workflow but a similar approach applies to other commands.

When using Compute Canada, MIRACL can be used as a Singularity container. The following instructions are based
on the steps provided on the Compute Canada Wiki.

62 Chapter 3. Tutorials

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://github.com/AICONSlab/MIRACL

MIRACL Documentation, Release 2.2.6

Copy your data to Compute Canada

For example, to copy a folder called input_clar containing tiff files you want to register to the Allen Atlas use:

$ scp -r input_clar niagara.computecanada.edu:/scratch/<username>/.

or

$ rsync -avPhz input_clar <username>@niagara.computecanada.edu:/scratch/<username>/.

Log in to Compute Canada server

Log in to the Compute Canada server you copied your data to:

$ ssh -XY <username>@niagara.computecanada.edu

Setting up and using MIRACL

Load the specific Singularity module you would like to use (e.g. Singularity 3.5):

$ module load singularity/3.5

Note: Not specifying the version will load the latest version available on your node

Since MIRACL will take up a significant amount of space, it is recommended to download and work with the MIRACL
Singularity container in the scratch directory. First, navigate there:

$ cd $SCRATCH

Then pull (download) the Singularity container:

$ singularity pull miracl_latest.sif library://aiconslab/miracl/miracl:latest

Attention: singularity pull requires Singularity version 3.0.0 or higher. Please refer to our Troubleshoot-
ing section (“Q: Can I build a Singularity container from the latest MIRACL image on Docker Hub”) if you are
using an older version of Singularity.

Note: If you have a particular Singularity container of MIRACL that you want to use on Compute Canada, just copy it
to the servers directly using e.g. scp or rsync instead of pulling (downloading) the latest version of MIRACL from the
Singularity registry

Start the MIRACL Singularity container with the default folders mounted:

$ singularity shell miracl_latest.sif bash

Singularitywill automatically mount your scratch folder to your container. If you need to mount a specific directory
into a specific location, use the following:

3.9. HPC/SLURM clusters 63

MIRACL Documentation, Release 2.2.6

$ singularity shell -B <location_outside_container>/<source_mount>:<location_in_
→˓container>/<target_mount> miracl_latest.sif bash

Once you are logged in to the container, load the GUI from the shell:

$ miraclGUI

Note: Please consult our Troubleshooting section on Singularity if you experience problems with opening
MIRACL's GUI on Compute Canada

Or use MIRACL from the command line. For example, run MIRACL's CLARITY registration workflow on the folder
that you copied over previously:

$ miracl flow reg_clar -f input_clar -n "-d 5 -ch autofluo" -r "-o ARS -m combined -v 25"

Note: If you have a particular Singularity container of MIRACL that you want to use on Compute Canada, just copy it
to the servers directly using e.g. scp or rsync instead of pulling (downloading) the latest version of MIRACL from the
Singularity registry

Jupyter notebook

An accompanying Jupyter notebook for this tutorial can be found here.

3.9.2 Running MIRACL commands on Sherlock (Stanford supercomputer)

This tutorial highlights the registration workflow but a similar approach applies to other commands.

Setting up MIRACL (first time)

Log in to Sherlock:

$ ssh -Y username@sherlock.stanford.edu

Start an interactive session:

$ sdev

Move to your scratch folder:

$ cd SCRATCH

Pull (download) Singularity container:

$ singularity pull miracl_latest.sif library://aiconslab/miracl/miracl:latest

64 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

Attention: singularity pull requires Singularity version 3.0.0 or higher. Please refer to our Trou-
bleshooting section (“Q: Can I build a Singularity container from the latest MIRACL image on Docker Hub”)
if you are using an older version of Singularity.

Tip: If you have a particular Singularity container of MIRACL that you want to use on Sherlock, just copy it to
the servers directly using e.g. scp or rsync instead of pulling (downloading) the latest version of MIRACL from the
Singularity registry

Copying your data to Sherlock

Copy a folder called, e.g. input_clar with tiff files that you want to register to the Allen Atlas using scp:

$ scp -r input_clar sherlock.stanford.edu:/scratch/users/<username>/clarity_registration/
→˓.

or rsync:

$ rsync -avPhz input_clar sherlock.stanford.edu:/scratch/users/<username>/clarity_
→˓registration/.

Attention: Make sure to replace <username> with your Sherlock username

Running MIRACL in an interactive session

For quick jobs that don’t require much resources you can login to Sherlock:

$ ssh -Y username@sherlock.stanford.edu

Move to your scratch folder:

$ cd SCRATCH

Start interactive session:

$ sdev

Start Singularity with binded data:

$ singularity shell miracl_latest.sif bash

Within the shell, load the GUI:

$ miraclGUI

Or use the command-line:

$ miracl lbls stats -h

3.9. HPC/SLURM clusters 65

MIRACL Documentation, Release 2.2.6

Note: Please consult our Troubleshooting section if you experience problems with opening MIRACL’s GUI on Sherlock

Running SBATCH jobs

If you want to run jobs with specific resources for larger, longer jobs (e.g. running the registration workflow) you can
do the following:

First get the data orientation (please check the registration tutorial for setting orientation):

$ miracl conv set_orient

After setting the orientation, a file called ort2std.txt will be created that might look like this:

$ cat ort2std.txt
tifdir=/scratch/users/username/clarity_registration/input_clar
ortcode=ARS

Use that orientation code (ARS) in your registration workflow.

First check the workflow arguments:

$ miracl flow reg_clar -h

Assuming you wanted to run this command with the following arguments, for example on your data:

$ miracl flow reg_clar -f input_clar -n "-d 5 -ch autofluo" -r "-o ARS -m combined -v 25"

Create an sbatch script named, for example reg_job.sbatch and paste the following lines:

#!/bin/bash
#SBATCH --job-name=clar_reg
#SBATCH --ntasks=1
#SBATCH --time=05:00:00
#SBATCH --cpus-per-task=12
#SBATCH --mem=32G

module load singularity

singularity exec ${SCRATCH}/miracl_latest.sif miracl flow reg_clar -f ${SCRATCH}/clarity_
→˓registration/input_clar -n "-d 5 -ch autofluo" -r "-o ARS -m combined -v 25"

Attention: Note that the miracl function call comes after invoking the Singularity call singularity exec
${SCRATCH}/miracl_latest.sif and that full file paths were used for the .sif container and the input data

This sample job (called: clar_reg) asks for 5 hours, 12 cpus and 32G of memory on one node. Adjust the requested
resources based on the job you are submitting.

Next submit the sbatch script:

$ sbatch reg_job.sbatch

To check on the status of your submitted job use:

66 Chapter 3. Tutorials

MIRACL Documentation, Release 2.2.6

$ squeue -u $USER

See also:

For more resources on SLURM sbatch jobs check Stanford’s tutorials on submitting and running jobs on Sherlock

Jupyter notebook

An accompanying Jupyter notebook for this tutorial can be found here.

3.9. HPC/SLURM clusters 67

https://www.sherlock.stanford.edu/docs/getting-started/submitting/
https://www.sherlock.stanford.edu/docs/user-guide/running-jobs/

MIRACL Documentation, Release 2.2.6

68 Chapter 3. Tutorials

CHAPTER

FOUR

JUPYTER NOTEBOOKS

ACE

STA

Registration

Regional statistics and visualization

Installing MIRACL on Windows

Singularity on Compute Canada and Sherlock

69

MIRACL Documentation, Release 2.2.6

70 Chapter 4. Jupyter notebooks

CHAPTER

FIVE

TROUBLESHOOTING

Choose an troubleshooting issue from the sidebar menu or TOC.

If you cannot find an answer to your problem here, please open an issue on our offical GitHub page.

5.1 Docker

5.1.1 MIRACL’s GUI (miraclGUI) is not working

Access control might be enabled on your host machine. Change your xhost access control on your host machine (not
within your Docker container). Exit the running Docker container and type:

xhost +

Log back in to your container. Reset xhost after you are done with using the MIRACL GUI using:

xhost -

The above will enable/disable access for all users. If this is not the desired behavior, access can be granted in a more
fine grained manner.

Example:

xhost +SI:localsuer:<yourusername>

Note: Replace <yourusername> with the actual user name of your host system

5.1.2 The GUI worked before but does not work anymore

Navigate to the directory that contains your docker-compose.yml and restart the container with docker compose
down followed by docker compose up -d. The GUI should work again.

71

https://github.com/AICONSlab/MIRACL
https://www.x.org/archive/X11R6.8.1/doc/xhost.1.html

MIRACL Documentation, Release 2.2.6

5.1.3 I cannot run X or Y with Docker because of permission denied errors

If you have not set up a Docker user you might need to run Docker commands with sudo. While this should work,
setting up a Docker user is the prefered.

5.1.4 Processes that require TrackVis or Diffusion Toolkit are not working

Because of their respective licenses, we could not include TrackVis or Diffusion Toolkit in our Docker image
directly. Please download and install them on you host machine using their installation guide. After they have been
successfully installed, mount a volume to your MIRACL Docker container that contains the binary folder for TrackVis
and Diffusion Toolkit and add the binaries to your $PATHwithin your MIRACL Docker container using the mounted
volume.

5.1.5 STA workflow fails when trying to create tracts

Make sure that the TrackVis and Diffusion Toolkit binaries are available to MIRACL. See the previous question
for details.

5.1.6 I need to install or make changes to apps in the MIRACL container but my
user is not authorized to do so

The user in the container is the user of your host machine. This is done to avoid issues with the MIRACL GUI and X11.
If you need to make changes that require sudo privileges, just log out of your container and log back in as root:

$ docker exec -it -u root miracl bash

After making your changes, log out and log back in with your regular user:

$ docker exec -it miracl bash

Attention: Always remembert that changes to the container are not persistent. If you need to make permanent
changes as sudo, add them to the Dockerfile instead.

5.1.7 MIRACL’s GUI (miraclGUI) does not work anymore after my ssh connection
has been broken

Assuming you logged back in with ssh and are in the container, exit the container and restart it using docker compose
down and docker compose up -d .

Shell back into the container and the GUI should work again.

Note: Note that the Docker Compose syntax is different if you installed it using the standalone method. Compose
standalone uses the -compose syntax instead of the current standard syntax compose. The above command would
thus be docker-compose up -d when using Compose standalone.

72 Chapter 5. Troubleshooting

MIRACL Documentation, Release 2.2.6

5.1.8 I do not want to create the image using the provided script

You can build the image yourself, not using the script we provide. However, the build script makes sure that the GUI
version of MIRACL works with Docker and it is therefore recommended to use it. Build the image with:

$ docker build -t mgoubran/miracl .

Note: Do not forget the . at the end of the command. It is required to point docker build to the Dockerfile.

To run the container use:

$ docker run -it mgoubran/miracl bash

Attention: If you make changes in the container that are not stored on a volume, make sure to use the same
container the next time you run MIRACL as changes made to a container will only apply to this specific container. If
you run MIRACL again from the same image using docker run -it mgoubran/miracl bash, a new container
will be created that does not contain the changes you made to the first container.

Warning: The MIRACL GUI will be unlikely to work out-of-the-box but you can try the troubleshooting steps in
the following section to make it work.

5.1.9 I get either or both of the following errors whenever I try to run the GUI
from within a Docker container that was build without the provided build script

Authorization required, but no authorization protocol specified
qt.qpa.xcb: could not connect to display :1

Note: The number for the display could be different in your case

qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "" even though it was␣
→˓found.
This application failed to start because no Qt platform plugin could be initialized.␣
→˓Reinstalling the application may fix this problem.

Available platform plugins are: eglfs, linuxfb, minimal, minimalegl, offscreen, vnc,␣
→˓wayland-egl, wayland, wayland-xcomposite-egl, wayland-xcomposite-glx, webgl, xcb.

Exit your running Docker container and run the following to mount an X11 socket from the host system in a new
Docker container:

docker run -it -e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix mgoubran/miracl bash

If you still receive the above error, you may have to change your xhost access control. See previous troubleshooting
step above.

5.1. Docker 73

MIRACL Documentation, Release 2.2.6

5.2 Singularity

5.2.1 Can I build a Singularity container from the latest MIRACL image on
Docker Hub

Absolutely! To do so, however, you will need to grab a development node after logging in to the cluster. If you try
pulling from the login node, you will use a ton of memory building the SIF image, and the process will be killed (in
other words, it won’t work).

$ sdev

or

$ salloc

Once you have your node, you can then build the container:

$ cd $SCRATCH
$ singularity build miracl_latest.sif docker://mgoubran/miracl:latest

5.2.2 Processes that require TrackVis or Diffusion Toolkit are not working

Because of their respective licenses, we could not include TrackVis or Diffusion Toolkit in our Docker image
directly. Please download and install them on you host machine using their installation guide. After they have been
successfully installed, mount a volume to your MIRACL Docker container that contains the binary folder for TrackVis
and Diffusion Toolkit and add the binaries to your $PATHwithin your MIRACL Docker container using the mounted
volume.

5.2.3 I get the following error whenever I try to run the GUI from within the Sin-
gularity container on Compute Canada

qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "" even though it was␣
→˓found.
This application failed to start because no Qt platform plugin could be initialized.␣
→˓Reinstalling the application may fix this problem.

Available platform plugins are: eglfs, linuxfb, minimal, minimalegl, offscreen, vnc,␣
→˓wayland-egl, wayland, wayland-xcomposite-egl, wayland-xcomposite-glx, webgl, xcb.

We do not recommend trying to make X11 forwarding work directly from the terminal. You should use VNC instead.
Follow the instructions here. Once you are connected to your login or compute node with VNC, you will see a desktop
environment. Open a terminal there and follow our tutorials on how to use MIRACL with Singularity on clusters.

If you for some reason need to run the MIRACL GUI directly in the terminal, using a Singularity container and X11,
try the following workarounds:

74 Chapter 5. Troubleshooting

https://docs.alliancecan.ca/wiki/VNC

MIRACL Documentation, Release 2.2.6

Login Nodes

Exit your Singularity container and start a VNC server (for 3600sec or more as required) on your login node:

vncserver -MaxConnectionTime 3600

The first time the VNC server is started you will prompted for a password (do not leave this blank). Once done, check
if a X11 socket is available for your username:

ls -la /tmp/.X11-unix/

Note: If no socket is available for your username, log out and log back in to your login node

Start another Singularity container and try to run miraclGUI again from within it.

Compute Nodes

Exit your Singularity container and set an environment variable on your allocated compute node:

export XDG_RUNTIME_DIR=${SLURM_TMPDIR}

Start a VNC server:

vncserver

Start another Singularity container and try to run miraclGUI again from within it.

5.3 Local installation

5.3.1 I get the following error whenever I try to run the GUI:
qt.qpa.plugin: Could not load the Qt platform plugin “xcb” in “{anaconda
path}/envs/miracl_merge/lib/python3.7/site-packages/cv2/qt/plugins” even
though it was found

If you know the path to the environment name, try running the following line to remove the specific file in question:

rm "{path_to_environment_name}/lib/python3.7/site-packages/cv2/qt/plugins/platforms/
→˓libqxcb.so"

5.3. Local installation 75

MIRACL Documentation, Release 2.2.6

76 Chapter 5. Troubleshooting

CHAPTER

SIX

GALLERY

Here is some representative work!

77

MIRACL Documentation, Release 2.2.6

6.1 Graphical User Interface (GUI)

78 Chapter 6. Gallery

MIRACL Documentation, Release 2.2.6

6.2 Brain Graph

6.2. Brain Graph 79

MIRACL Documentation, Release 2.2.6

6.3 Clarity Registration

80 Chapter 6. Gallery

MIRACL Documentation, Release 2.2.6

6.4. Connectivity 81

MIRACL Documentation, Release 2.2.6

Fig. 1: Connectivity matrix heat map with 25 labels

82 Chapter 6. Gallery

MIRACL Documentation, Release 2.2.6

Fig. 2: Connectogram grouped by parent ID with 50 labels

6.4. Connectivity 83

MIRACL Documentation, Release 2.2.6

Fig. 3: Density along connectivity graph

6.4 Connectivity

6.5 Pipeline

84 Chapter 6. Gallery

MIRACL Documentation, Release 2.2.6

6.6 Registration and Segmentation

6.6. Registration and Segmentation 85

MIRACL Documentation, Release 2.2.6

Fig. 4: Projection map along graph with 25 labels

86 Chapter 6. Gallery

MIRACL Documentation, Release 2.2.6

Fig. 5: Registration result visualized in ITK-SNAP

Fig. 6: Segmentation

6.6. Registration and Segmentation 87

MIRACL Documentation, Release 2.2.6

88 Chapter 6. Gallery

CHAPTER

SEVEN

DOWNLOADS

Here you can find downloads for e.g. atlasses, example data or workshop slides.

7.1 Data

Example datasets, atlases etc.

7.1.1 Example and atlases data

Sample data you can use to test MIRACL and the data for the atlases used by MIRACL can be found here:

Dropbox Data Link

The Atlases folder contains templates, annotations, histology, ontology graph info and LUT/label description of the
Allen Reference Atlas (ARA).

The Data folder contains test data with example inputs and outputs for the registration and segmentation modules.

For a detailed description and input parameters please check the respective help or tutorial of each module.

7.2 Workshops

Slides and notebooks for workshops given on MIRACL can be downloaded from here.

7.2.1 2024

March 20th: MIRACL Workshop at Stanford

89

https://www.dropbox.com/sh/i9swdedx7bsz1s8/AABpDmmN1uqPz6qpBLYLtt8va

MIRACL Documentation, Release 2.2.6

Flyer

90 Chapter 7. Downloads

MIRACL Documentation, Release 2.2.6

Notebooks

ACE

STA

Registration

Regional statistics and visualization

Installing MIRACL on Windows

Singularity on Compute Canada and Sherlock

MIRACL (Multi-modal Image Registration And Connectivity anaLysis) is a general-purpose, open-source pipeline for
automated:

1. Registration of cleared and imaging data (ex. LSFM and MRI) to atlases (ex. Allen Reference Atlas)

2. 3D Segmentation and feature extraction of cleared data

3. Tract-specific or network-level connectivity analysis

4. Statistical analysis of cleared and imaging data

5. Comparison of dMRI/tractography, virus tracing, and connectivity atlases

6. Atlas generation and Label manipulation

7.2. Workshops 91

MIRACL Documentation, Release 2.2.6

92 Chapter 7. Downloads

CHAPTER

EIGHT

NEW WORKFLOW/FEATURE RELEASE

We have released our AI-based Cartography of Ensembles (ACE) workflow, an end-to-end, automated pipeline that in-
tegrates cutting-edge deep learning segmentation models and advanced statistical methods to enable unbiased and gen-
eralizable brain-wide mapping of 3D alterations in neuronal activity, morphology, or connectivity at the sub-regional
and laminar levels beyond atlas-defined regions.

The tutorial for using ACE can be found here.

We recommend using MIRACL with the Docker or Singularity containers we provide but it can also be installed locally.
See our installation instructions for more information.

Copyright © 2023 @ AICONS Lab.

All Rights Reserved.

93

https://github.com/AICONSlab/MIRACL/tree/ace
https://miracl.readthedocs.io/en/latest/tutorials/workflows/ace_flow/ace_flow.html
https://aiconslab.github.io/

	About
	MIRACL in a nutshell
	Program structure
	Modules
	Workflows

	Licence
	Citing MIRACL
	MIRACL publication
	APA
	BibTeX

	Tools used by MIRACL

	MIRACL in research
	Acknowledgements
	AICONS Lab

	Installing and running MIRACL
	Tutorials
	Legend
	Getting started
	Command-line
	GUI

	Workflows
	ACE Workflow
	Main Inputs
	CLI
	Main outputs
	Example of running ACE on single subject (segmenation + registration + voxelization + warping) (link to sample data):
	Example of running ACE flow on multiple subjects:
	Example of running only ACE segmentation module on one single subject (link to sample data):
	Example of running only ACE cluster wise analysis on voxelized and warped segmentation maps (link to sample data):
	Jupyter notebook

	CLARITY whole-brain registration to Allen Atlas
	Main outputs
	GUI
	Command-line
	Visualize results

	STA workflow
	Main Outputs
	GUI
	Command-line
	Jupyter notebook

	CLARITY whole-brain segmentation
	Main outputs
	GUI
	Command-line

	Conversion
	Tiff to Nifti
	GUI
	Command-line

	Registration
	CLARITY-Allen registration
	GUI
	Command-line
	Jupyter notebook

	MRI whole-brain registration to Allen Atlas
	GUI
	Command-line

	Stats
	ACE Cluster Only
	Main Inputs
	CLI
	Example usage (link to sample data):
	Jupyter notebook

	Segmentation
	ACE Segmentation Function
	CLI

	Utilities
	Intensity correction
	Command-line

	HPC/SLURM clusters
	Running MIRACL on Compute Canada
	Copy your data to Compute Canada
	Log in to Compute Canada server
	Setting up and using MIRACL
	Jupyter notebook

	Running MIRACL commands on Sherlock (Stanford supercomputer)
	Setting up MIRACL (first time)
	Copying your data to Sherlock
	Running MIRACL in an interactive session
	Running SBATCH jobs
	Jupyter notebook

	Jupyter notebooks
	Troubleshooting
	Docker
	MIRACL’s GUI (miraclGUI) is not working
	The GUI worked before but does not work anymore
	I cannot run X or Y with Docker because of permission denied errors
	Processes that require TrackVis or Diffusion Toolkit are not working
	STA workflow fails when trying to create tracts
	I need to install or make changes to apps in the MIRACL container but my user is not authorized to do so
	MIRACL’s GUI (miraclGUI) does not work anymore after my ssh connection has been broken
	I do not want to create the image using the provided script
	I get either or both of the following errors whenever I try to run the GUI from within a Docker container that was build without the provided build script

	Singularity
	Can I build a Singularity container from the latest MIRACL image on Docker Hub
	Processes that require TrackVis or Diffusion Toolkit are not working
	I get the following error whenever I try to run the GUI from within the Singularity container on Compute Canada
	Login Nodes
	Compute Nodes

	Local installation
	I get the following error whenever I try to run the GUI: qt.qpa.plugin: Could not load the Qt platform plugin “xcb” in “{anaconda path}/envs/miracl_merge/lib/python3.7/site-packages/cv2/qt/plugins” even though it was found

	Gallery
	Graphical User Interface (GUI)
	Brain Graph
	Clarity Registration
	Connectivity
	Pipeline
	Registration and Segmentation

	Downloads
	Data
	Example and atlases data

	Workshops
	2024
	March 20th: MIRACL Workshop at Stanford
	Flyer
	Notebooks

	NEW WORKFLOW/FEATURE RELEASE

